

Mr

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 3rd Semester Examination, 2023-24

CMSACOR05T-COMPUTER SCIENCE (CC5)

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

GROUP A

1. Answer any four from the following:

 $2 \times 4 = 8$

- (a) What is the advantage of using polish notation in computers?
- (b) Write one advantage of circular linked list over singly linked list.
- (c) When does the worst case for Bubble sort occur?
- (d) What is a height balanced BST?
- (e) What is deque? .
 - (f) What is tail recursion?
- (g) Write postfix form of the following:

$$(A+B)*D+E/(F+A*D)+C$$

GROUP B

Attempt any four questions

2. Write an algorithm to implement queue using stack. Prove that the maximum 4+4 number of nodes on level i of a binary tree is 2^{i-1} , $i \ge 1$

- Write an algorithm to reverse a link list. What is threaded binary tree? Explain 4+4 with an example.
- 4. (a) Imagine a hash-table of size 10. Using the hash function f(i) = i% 10, and open addressing with linear probing for collision resolution, insert the following four keys one by one into the hash table: {2, 13, 22, 4}. Show the contents of the hash table after each insertion.
 - (b) Prove that a tree with n nodes has exactly n-1 edges.

4

 $8 \times 4 = 32$

CBCS/B.Sc./Hons./3rd Sem./CMSACOR05T/2023-24

5. (a) Write an algorithm to delete an element from a circular queue.	4
(b) Write a program in C/C++ to find duplicate elements in an array.	4
6. (a) Give a memory efficient storage representation for sparse matrices.	4
(b) Based on the representation you suggested above for sparse matrices, now write an algorithm to add two sparse matrices.	4
7. (a) Reconstruct the original binary tree from the following sequences:	4
Inorder sequence: D, G, B, H, E, A, F, I, C	
Preorder sequence: A, B, D, G, E, H, C, F, I	
Compare the best and worst case time complexity of searching an element in a linked list versus an array.	4